A Novel Successive Cancellation Method to Retrieve Sea Wave Components from Spatio-Temporal Remote Sensing Image Sequences
نویسندگان
چکیده
In this paper, we consider retrieving individual wave components in a multi-directional sea wave model. To solve this problem, a currently and commonly used method is three-dimensional discrete Fourier transform (3D DFT) on the radar image sequence. However, the uniform frequency and the uniform wavenumber in a wavenumber frequency domain can not always strictly satisfy the dispersion relation, and the spectral leakage in both temporal and spatial domains exists due to the limited analysis area selected from an image sequence. As a result, the DFT method incurs undesirable error performance in retrieving directional wave components. By deeply investigating the data structure of the multi-directional sea wave model, we obtain a new and decomposable matrix representation for processing the wave components. Then, a novel successive cancellation method is proposed to efficiently and effectively extract individual wave components, whose frequency and wavenumber rigorously satisfy the liner dispersion relation. Thus, it avoids spectral leakage in the spatial domain. The algorithm is evaluated by using linear synthetic wave image sequences. The validity of the proposed novel algorithm is verified by comparing the retrieved parameters of amplitude, phase, and direction of the individual wave components with the simulated parameters as well as those obtained by using the 3D DFT method. In addition, the reconstructed sea field using the retrieved wave components is also compared with the simulated remote sensing images as well as those attained using the inverse 3D DFT method. All the simulation results demonstrate that our proposed algorithm is more effective and has better performance for retrieving individual wave components from the spatio-temporal remote sensing image sequences than the 3D DFT method.
منابع مشابه
Spatio-temporal distribution of off-shore ships in the Pars Special Economic Energy Zone based on satellite imagery
Special Economic Zones (SEZs) are areas controlled by specific legislations so as toattain economic prosperity. These zones are commonly established and controlled bygovernment officials and are primarily characterized by growing population and developingtransport infrastructure. One relevant case is the Pars Special Economic Energy Zone(PSEEZ) situated in the south of Iran, on the northern sho...
متن کاملSpatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملEvaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016